Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 14(2)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38392028

RESUMO

Reflection-type photoplethysmography (PPG) pulse sensors used in wearable smart watches, true wireless stereo, etc., have been recently considered a key component for monitoring biological signals such as heart rate, SPO3, and blood pressure. Typically, the optical front end (OFE) of these PPG sensors is heterogeneously configured and packaged with light sources and receiver chips. In this paper, a novel quarter-annulus photodetector (NQAPD) with identical inner and outer radii of curvature has been developed using a plasma dicing process to realize a ring-type OFE receiver, which maximizes manufacturing efficiency and increases the detector collection area by 36.7% compared to the rectangular PD. The fabricated NQAPD exhibits a high quantum efficiency of over 90% in the wavelength of 500 nm to 740 nm and the highest quantum efficiency of 95% with a responsivity of 0.41 A/W at the wavelength of 530 nm. Also, the NQAPD is shown to increase the SNR of the PPG signal by 5 to 7.6 dB compared to the eight rectangular PDs. Thus, reflective PPG sensors constructed with NQAPD can be applied to various wearable devices requiring low power consumption, high performance, and cost-effectiveness.


Assuntos
Fotopletismografia , Dispositivos Eletrônicos Vestíveis , Frequência Cardíaca/fisiologia , Extremidade Superior , Pressão Sanguínea , Processamento de Sinais Assistido por Computador
2.
ACS Appl Mater Interfaces ; 15(18): 22274-22281, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37115789

RESUMO

High-quality Bi2Se3 thin films with topological insulating properties at room temperature have recently attracted much attention as one of the promising materials for realizing innovative electronic and optoelectronic devices. Here, we report the high crystallinity growth of Bi2Se3 thin films on a patterned sapphire substrate (PSS) by using a vapor-phase transport deposition with minimizing thermal dissociation of Se atoms vaporized in Bi2Se3 powder. This PSS not only reduces the large dislocation of heterogeneously grown Bi2Se3 on a sapphire substrate but also induces enhanced light absorption in the visible to near-infrared (IR) ranges compared to Bi2Se3 on planar sapphire substrates. Thus, the Bi2Se3 thin film laterally grown on the PSS reveals uniform surface properties and high crystallinity in the rhombohedral lattice phase with a full width at half maximum of 0.06° for the XRD (003) peak. Also, the photoresponse of the fabricated IR conversion device using Bi2Se3/PSS heterostructure exhibits excellent performance and high reliability with no degradation after continuous switching. As a result, the device constructed with the Bi2Se3/PSS exhibits one order of magnitude higher NIR induced-photocurrent and 1-2 orders of magnitude faster photo-switching than that with Bi2Se3/Al2O3. Such an enhancement in the device performance of Bi2Se3/PSS is confirmed by the increased absorption spectra in visible and NIR ranges and the improved light absorption distribution.

3.
Opt Express ; 29(17): 26634-26644, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34615094

RESUMO

Randomly distributed plasmonic Ag nanoparticles (NPs) with various sizes were fabricated by a reflow process to an island-shaped Ag thin-film deposited on a Si photodiode. These NPs conformally enclosed by an antireflective (AR)-type SiNx/SiO2 bilayer reveal significantly diminished reflectance in a broad wavelength (500 nm - 1100 nm) as compared to the cases of Ag NPs or SiO2 layer enclosing Ag NPs on the Si substrate. Accordingly, the forward scattering and the total reflection along with wide-angle interference in between the dielectric bilayer incorporating the Ag NPs induce highly increased light absorption in the Si substrate. The fabricated Si photodiode adopting the plasmonic AR bilayer shows the responsivity peak value of 0.72 A/W at 835 nm wavelength and significant responsivity enhancement up to 40% relative to a bare Si photodiode in a wavelength range of 500 nm to 1000 nm.

4.
Sensors (Basel) ; 21(20)2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34695935

RESUMO

To realize high-resolution thermal images with high quality, it is essential to improve the noise characteristics of the widely adopted uncooled microbolometers. In this work, we applied the post-metal annealing (PMA) process under the condition of deuterium forming gas, at 10 atm and 300 °C for 30 min, to reduce the noise level of amorphous-Si microbolometers. Here, the DC and temperature coefficient of resistance (TCR) measurements of the devices as well as 1/f noise analysis were performed before and after the PMA treatment, while changing the width of the resistance layer of the microbolometers with 35 µm or 12 µm pixel. As a result, the microbolometers treated by the PMA process show the decrease in resistance by about 60% and the increase in TCR value up to 48.2% at 10 Hz, as compared to the reference device. Moreover, it is observed that the noise characteristics are improved in inverse proportion to the width of the resistance layer. This improvement is attributed to the cured poly-silicon grain boundary through the hydrogen passivation by heat and deuterium atoms applied during the PMA, which leads to the uniform current path inside the pixel.

5.
Toxicol Res ; 37(2): 277-284, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33868983

RESUMO

Numerous studies have reported the potential of chemicals for inducing skin sensitization; however, few studies have examined skin sensitization induced by nanomaterials. This study aimed to evaluate skin sensitization induced by metal oxide nanoparticles (NPs) using the ARE-Nrf2 Luciferase KeratinoSens™ assay. Seven different metal oxide NPs, including copper oxide, cobalt oxide, nickel oxide, titanium oxide, cerium oxide, iron oxide, and zinc oxide, were assessed on KeratinoSens™ cells. We selected an appropriate vehicle among three vehicles (DMSO, DW, and culture medium) by assessing the hydrodynamic size at vehicle selection process. Seven metal oxide NPs were analyzed, and their physicochemical properties, including hydrodynamic size, polydispersity, and zeta potential, were determined in the selected vehicle. Thereafter, we assessed the sensitization potential of the NPs using the ARE-Nrf2 Luciferase KeratinoSens™ assay. Copper oxide NPs induced a positive response, whereas cobalt oxide, nickel oxide, titanium oxide, cerium oxide, iron oxide, and zinc oxide NPs induced no response. These results suggest that the ARE-Nrf2 Luciferase KeratinoSens™ assay may be useful for evaluating the potential for skin sensitization induced by metal oxide NPs.

6.
Nanomaterials (Basel) ; 11(2)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578905

RESUMO

High crystalline ZnO nanorods (NRs) on Zn pre-deposited graphene/Cu sheet without graphene transfer process have been fabricated by self-catalyzed vapor-phase transport synthesis. Here, the pre-deposited Zn metal on graphene not only serves as a seed to grow the ZnO NRs, but also passivates the graphene underneath. The temperature-dependent photoluminescence spectra of the fabricated ZnO NRs reveal a dominant peak of 3.88 eV at 10 K associated with the neutral-donor bound exciton, while the redshifted peak by bandgap shrinkage with temperature and electron-lattice interactions leads a strong emission at 382 nm at room temperature. The optical absorption of the ZnO NRs/graphene hetero-nanostructure at this ultraviolet (UV) emission is then theoretically analyzed to quantify the absorption amount depending on the ZnO NR distribution. By simply covering the ZnO NR/graphene/Cu structure with the graphene/glass as a top electrode, it is observed that the current-voltage characteristic of the ZnO NR/graphene hetero-nanojunction device exhibits a photocurrent of 1.03 mA at 3 V under a light illumination of 100 µW/cm2. In particular, the suggested graphene/ZnO NRs/graphene hybrid-nanostructure-based devices reveal comparable photocurrents at a bidirectional bias, which can be a promising platform to integrate 1D and 2D nanomaterials without complex patterning process for UV device applications.

7.
Polymers (Basel) ; 12(2)2020 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-32024283

RESUMO

Novel antireflective (AR) structures have attracted tremendous attention and been used in various applications such as solar cells, displays, wearable devices, and others. They have also stimulated the development of several other methods, including moth-eye-inspired technologies. However, the analyses of the shapes and sizes of nanostructures remain a critical issue and need to be considered in the design of effective AR surfaces. Herein, moth-eye and inverse-moth-eye patterned polyurethane-acrylate (PUA) structures (MPS and IMPS) with three different sizes are analyzed and compared to optimize the designed nanostructures to achieve the best optical properties pertaining to maximum transmittance and minimum reflectance. We fabricated moth-eye-inspired conical structures with three different sizes using a simple and robust fabrication method. Furthermore, the fabricated surfaces of the MPS and IMPS structures were analyzed based on the experimental and theoretical variation influences of their optical properties according to their sizes and shapes. As a result of these analyses, we herein propose a standard methodology based on the optimal structure of IMPS structure with a 300 nm diameter.

8.
Toxicol Ind Health ; 35(8): 507-519, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31462197

RESUMO

In commercial products such as household deodorants or biocides, didecyldimethylammonium chloride (DDAC) often serves as an antimicrobial agent, citral serves as a fragrance agent, and the excipient ethylene glycol (EG) is used to dissolve the active ingredients. The skin sensitization (SS) potentials of each of these substances are still being debated. Moreover, mixtures of DDAC or citral with EG have not been evaluated for SS potency. The in vitro alternative assay called human Cell Line Activation Test (h-CLAT) and Direct Peptide Reactivity Assay (DPRA) served to address these issues. On three independent runs of h-CLAT, DDAC and citral were predicted to be sensitizers while EG was predicted to be a non-sensitizer and also by the DPRA. Mixtures of DDAC or citral with EG at ratios of 7:3 and 1:4 w/v were all positive by the h-CLAT in terms of SS potential but SS potency was mitigated as the proportion of EG increased. Citral and its EG mixtures were all positive but DDAC and its EG mixtures were all negative by the DPRA, indicating that the DPRA method is not suitable for chemicals with pro-hapten characteristics. Since humans can be occupationally or environmentally exposed to mixtures of excipients with active ingredients, the present study may give insights into further investigations of the SS potentials of various chemical mixtures.


Assuntos
Monoterpenos Acíclicos/efeitos adversos , Etilenoglicol/efeitos adversos , Excipientes/efeitos adversos , Compostos de Amônio Quaternário/efeitos adversos , Testes de Irritação da Pele/métodos , Pele/efeitos dos fármacos , Monoterpenos Acíclicos/administração & dosagem , Alternativas aos Testes com Animais/métodos , Antígeno B7-2/metabolismo , Bioensaio/métodos , Linhagem Celular , Etilenoglicol/administração & dosagem , Excipientes/administração & dosagem , Humanos , Molécula 1 de Adesão Intercelular/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-29875078

RESUMO

The mutagenic potencies of 1,3-propane sultone (PS), N-propyl-N-nitrosourea (PNU), and mitomycin C (MMC) were investigated in three independent laboratories in Korea using the Pig-a assay in vivo. Sprague-Dawley rats were treated with vehicle or test substance on three consecutive days. Blood samples were collected for measuring Pig-a mutant phenotypes (CD59-deficient erythrocytes, RBCCD59-; CD59-deficient reticulocytes, RETCD59-) on days -1, 15, and 29 after the first treatment. In some studies, blood was collected for determining DNA damage (comet assay) on day 3 and measuring micronucleated reticulocytes (MN-RET) on day 4. Treatment with the alkylating agents PS and PNU induced dose-dependent increases in the frequency of RBCCD59- on days 15 and 29, and caused maximum elevations in the frequency of RETCD59- on day 15. Inter-laboratory comparison of the day 29 Pig-a assay data confirmed the mutagenic potencies of PS and PNU, and showed good agreement among the test sites. Treatment with the DNA cross-linker MMC induced increases in the frequencies of RBCCD59- and RETCD59- on days 15 and 29 (all three laboratories). MN-RETs increased significantly in animals treated with PS, PNU, or MMC, but biologically significant increases in DNA damage were observed only with PS and PNU, and not with MMC. The results of this study indicate that the Pig-a assay is a sensitive, reproducible method for evaluating the in vivo mutagenicity of various test substances, in particular, DNA cross-linkers and alkylating agents. Our limited data on integrating the Pig-a assay with the comet and micronucleus assays indicate that a short-term treatment protocol evaluating these three endpoints in a single set of animals may be a robust strategy for evaluating in vivo genotoxicity.


Assuntos
Laboratórios/normas , Proteínas de Membrana/genética , Mitomicina/toxicidade , Mutação , Compostos de Nitrosoureia/toxicidade , Reticulócitos/patologia , Tiofenos/toxicidade , Alquilantes/toxicidade , Animais , Reagentes de Ligações Cruzadas/toxicidade , Dano ao DNA , Masculino , Proteínas de Membrana/sangue , Testes de Mutagenicidade , Ratos , Ratos Sprague-Dawley , Reticulócitos/efeitos dos fármacos , Reticulócitos/metabolismo
10.
ACS Appl Mater Interfaces ; 10(12): 10353-10361, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29498262

RESUMO

We demonstrate a controllable and reliable process for manifesting color patterns on solid substrates using cellulose nanocrystals (CNCs) without the use of any other chemical pigments. The color can be controlled by adjusting the assembly conditions of the CNC solution during a dip-and-pull process while aiding the close packing of CNCs on a solid surface with the help of ionic-liquid (1-butyl-3-methylimidazolium) molecules that screen the repelling electrostatic charges between CNCs. By controlling the pulling speed from 3 to 9 µm/min during the dip-and-pull process, we were able to control the film thickness from 100 to 300 nm, resulting in films with different colors in the visible range. The optical properties were in good agreement with the finite-difference time-domain simulation results. By functionalizing these films with amine groups, we developed colorimetric sensors that can change in color when exposed to aldehyde gases such as formaldehyde or propanal. A principal component analysis showed that we can differentiate between different aldehyde gases and other interfering molecules. We expect that our approach will enable inexpensive and rapid volatile organic compound detection with on-site monitoring capabilities.

11.
Nanotechnology ; 28(49): 495501, 2017 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-28994398

RESUMO

We demonstrate a highly sensitive and flexible bending strain sensor using tin-doped indium oxide (ITO) nanoparticles (NPs) assembled in line patterns on flexible substrates. By utilizing transparent ITO NPs without any surface modifications, we could produce strain sensors with adjustable gauge factors and optical transparency. We were able to control the dimensional and electrical properties of the sensors, such as channel height and resistance, by controlling the NP assembly speed. Furthermore, we were able to generate controlled gauge factor with values ranging from 18 to 157, which are higher than previous cases using metallic Cr NPs and Au NPs. The alignment of the ITO NPs in parallel lines resulted in low crosstalk between the transverse and longitudinal bending directions. Finally, our sensor showed high optical transmittance, up to ∼93% at 500 nm wavelength, which is desirable for flexible electronic applications.

12.
Sci Rep ; 7(1): 8811, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28821773

RESUMO

Micro-fabricated single-layer graphenes (SLGs) on a silicon dioxide (SiO2)/Si substrate, a silicon nitride (SiN) membrane, and a suspended architecture are presented for their use as temperature sensors. These graphene temperature sensors act as resistance temperature detectors, showing a quadratic dependence of resistance on the temperature in a range between 283 K and 303 K. The observed resistance change of the graphene temperature sensors are explained by the temperature dependent electron mobility relationship (~T-4) and electron-phonon scattering. By analyzing the transient response of the SLG temperature sensors on different substrates, it is found that the graphene sensor on the SiN membrane shows the highest sensitivity due to low thermal mass, while the sensor on SiO2/Si reveals the lowest one. Also, the graphene on the SiN membrane reveals not only the fastest response, but also better mechanical stability compared to the suspended graphene sensor. Therefore, the presented results show that the temperature sensors based on SLG with an extremely low thermal mass can be used in various applications requiring high sensitivity and fast operation.

13.
Nat Commun ; 7: 13422, 2016 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-27830709

RESUMO

Perovskite solar cells have shown unprecedent performance increase up to 22% efficiency. However, their photovoltaic performance has shown fast deterioration under light illumination in the presence of humid air even with encapulation. The stability of perovskite materials has been unsolved and its mechanism has been elusive. Here we uncover a mechanism for irreversible degradation of perovskite materials in which trapped charges, regardless of the polarity, play a decisive role. An experimental setup using different polarity ions revealed that the moisture-induced irreversible dissociation of perovskite materials is triggered by charges trapped along grain boundaries. We also identified the synergetic effect of oxygen on the process of moisture-induced degradation. The deprotonation of organic cations by trapped charge-induced local electric field would be attributed to the initiation of irreversible decomposition.

14.
Opt Express ; 24(14): 16027-36, 2016 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-27410872

RESUMO

The shrinkage of pixel size down to sub-2 µm in high-resolution CMOS image sensors (CISs) results in degraded efficiency and increased crosstalk. The backside illumination technology can increase the efficiency, but the crosstalk still remains an critical issue to improve the image quality of the CIS devices. In this paper, by adopting a parabolic color filter (P-CF), we demonstrate efficiency enhancement without any noticeable change in optical crosstalk of a backside illuminated 1.12 µm pixel CIS with deep-trench-isolation structure. To identify the observed results, we have investigated the effect of radius of curvature (r) of the P-CF on the efficiency and optical crosstalk of the CIS by performing an electromagnetic analysis. As the r of P-CF becomes equal to (or half) that of the microlens, the efficiencies of the B-, G-, and R-pixels increase by a factor of 14.1% (20.3%), 9.8% (15.3%), and 15.0% (15.7%) with respect to the flat CF cases without any noticeable crosstalk change. Also, as the incident angle increases up to 30°, the angular dependence of the efficiency and crosstalk significantly decreases by utilizing the P-CF in the CIS. Meanwhile, further reduction of r severely increases the optical crosstalk due to the increased diffraction effect, which has been confirmed with the simulated electric-field intensity distribution inside the devices.

15.
Small ; 12(18): 2443-9, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26990492

RESUMO

A moth-eye nanostructured mp-TiO2 film using conventional lithography, nano-imprinting and polydimethyl-siloxane (PDMS) stamping methods is demonstrated for the first time. Power conversion efficiency of the moth-eye patterned perovskite solar cell is improved by ≈11%, which mainly results from increasing light harvesting efficiency by structural optical property.

16.
Nanotechnology ; 27(5): 055403, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26751935

RESUMO

We report three-dimensionally assembled nanoparticle structures inducing multiple plasmon resonances for broadband light harvesting in nanocrystalline silicon (nc-Si:H) thin-film solar cells. A three-dimensional multiscale (3DM) assembly of nanoparticles generated using a multi-pin spark discharge method has been accomplished over a large area under atmospheric conditions via ion-assisted aerosol lithography. The multiscale features of the sophisticated 3DM structures exhibit surface plasmon resonances at multiple frequencies, which increase light scattering and absorption efficiency over a wide spectral range from 350-1100 nm. The multiple plasmon resonances, together with the antireflection functionality arising from the conformally deposited top surface of the 3D solar cell, lead to a 22% and an 11% improvement in power conversion efficiency of the nc-Si:H thin-film solar cells compared to flat cells and cells employing nanoparticle clusters, respectively. Finite-difference time-domain simulations were also carried out to confirm that the improved device performance mainly originates from the multiple plasmon resonances generated from three-dimensionally assembled nanoparticle structures.

17.
Toxicol Res ; 31(2): 157-63, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26191382

RESUMO

Nanotechnology has advanced at an extremely rapid pace over the past several years in numerous fields of research. However, the uptake of nanoparticles (NPs) into the body after administration through various routes may pose a risk to human health. In this study, we investigated the potential ocular toxicity of 20-nm, negatively- charged zinc oxide (ZnO) NPs in rats using micro-computed tomography (micro-CT) and histopathological assessment. Animals were divided into four groups as control group, ZnO NPs treatment group (500 mg/kg/day), control recovery group, and ZnO NPs treatment and recovery group. Ocular samples were prepared from animals treated for 90 days (10 males and 10 females, respectively) and from recovery animals (5 males and 5 females, respectively) sacrificed at 14 days after final treatment and were compared to age-matched control animals. Micro-CT analyses represented the deposition and distribution of foreign materials in the eyes of rats treated with ZnO NPs, whereas control animals showed no such findings. X-ray fluorescence spectrometry and energy dispersive spectrometry showed the intraocular foreign materials as zinc in treated rats, whereas control animals showed no zinc signal. Histopathological examination revealed the retinopathy in the eyes of rats treated with ZnO NPs. Neuronal nuclei expression was decreased in neurons of the ganglion cell layer of animals treated with ZnO NPs compared to the control group. Taken together, treatment with 20-nm, negatively-charged ZnO NPs increased retinopathy, associated with local distribution of them in ocular lesions.

18.
Adv Mater ; 26(34): 5924-9, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-24804979

RESUMO

Novel 3D metallic structures composed of multipetal flowers consisting of nanoparticles are presented. The control of surface plasmon hotspots is demonstrated in terms of location and intensity as a function of petal number for uniform and reproducible surfaceenhanced Raman spectroscopy (SERS) with high field enhancement.


Assuntos
Nanopartículas Metálicas/química , Análise Espectral Raman/métodos , Materiais Biomiméticos/química , Fenômenos Eletromagnéticos , Flores , Microscopia Eletrônica de Varredura , Ressonância de Plasmônio de Superfície
19.
Nanotechnology ; 25(22): 225302, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24833290

RESUMO

We present an approach utilizing ion assisted aerosol lithography (IAAL) with a newly designed multi-pin spark discharge generator (SDG) for fabricating large-area three-dimensional (3D) nanoparticle-structure (NPS) arrays. The design of the multi-pin SDG allows us to uniformly construct 3D NPSs on a large area of 50 mm × 50 mm in a parallel fashion at atmospheric pressure. The ion-induced focusing capability of IAAL significantly reduces the feature size of 3D NPSs compared to that of the original pre-patterns formed on a substrate. The spatial uniformity of 3D NPSs is above 95% using the present multi-pin SDG, which is far superior to that of the previous single-pin SDG with less than 32% uniformity. The effect of size distributions of nanoparticles generated via the multi-pin SDG on the 3D NPSs also has been studied. In addition, we measured spectral reflectance for the present 3D NPSs coated with Ag, demonstrating enhanced diffuse reflectance.

20.
ACS Nano ; 8(3): 2590-601, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24533831

RESUMO

We report the effect of a nanobump assembly (NBA) constructed with molybdenum oxide (MoO3) covering Ag nanoparticles (NPs) under the active layer on the efficiency of plasmonic polymer solar cells. Here, the NPs with precisely controlled concentration and size have been generated by an atmospheric evaporation/condensation method and a differential mobility classification and then deposited on an indium tin oxide electrode via room temperature aerosol method. NBA structure is made by enclosing NPs with MoO3 layer via vacuum thermal evaporation to isolate the undulated active layer formed onto the underlying protruded NBA. Simulated scattering cross sections of the NBA structure reveal higher intensities with a strong forward scattering effect than those from the flat buffer cases. Experimental results of the device containing the NBA show 24% enhancement in short-circuit current density and 18% in power conversion efficiency compared to the device with the flat MoO3 without the NPs. The observed improvements are attributed to the enhanced light scattering and multireflection effects arising from the NBA structure combined with the undulated active layer in the visible and near-infrared regions. Moreover, we demonstrate that the NBA adopted devices show better performance with longer exciton lifetime and higher light absorption in comparison with the devices with Ag NPs incorporated flat poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). Thus, the suggested approach provides a reliable and efficient light harvesting in a broad range of wavelength, which consequently enhances the performance of various organic solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...